Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

24/07/2009

L'univers est Un…


niels-bohr_einstein.jpg[...] L'Univers n'est pas un ensemble d'objets

A la fin des années 1960, deux chercheurs, Simon Kochen et Ernst Specker, ont montré que la mécanique quantique prédisait d’autres bizarreries peu compatibles avec une telle vision.

Si des théories déterministes non locales étaient encore possibles, elles ne pouvaient pas être non contextuelles car le théorème aujourd’hui connu sous le nom de Kochen-Speker (KS) établissait que le formalisme de la théorie quantique impliquait une contextualité.

Mais qu’est-ce que la contextualité ?

C’est une propriété de la mécanique quantique qui appuie les conceptions de Bohr et renforce l’idée que le monde n’est fondamentalement pas dans l’espace et dans le temps, qu’il existe un réel voilé, selon l'expression de Bernard d’Espagnat.

On ne peut pas découper l’Univers, sauf de façon approximative, en un ensemble d’objets séparés dans l’espace et dans le temps et possédant aussi des propriétés indépendantes de l’état de chacun de ces objets.

Extrait de l'article paru sur futura-sciences.

29/05/2008

Le hasard cosmique


"L'idée que l'ordre et la précision de l'univers, dans ses aspects innombrables, serait le résultat d'un hasard aveugle, est aussi peu crédible que si, après l'explosion d'une imprimerie, tous les caractères retombaient par terre dans l'ordre d'un dictionnaire".


Albert Einstein

25/03/2008

Vers une nouvelle physique ?


Les mésons B nous apportent-ils une nouvelle physique ?
Par Laurent Sacco, Futura-Sciences

Une asymétrie dans le comportement de certains intriguent les physiciens. Selon certains, la violation de la symétrie CP observée avec ceux-ci n’est pas compatible avec les équations du modèle standard. Une nouvelle physique devrait intervenir, comme de la supersymétrie ou des dimensions spatiales supplémentaires, et elle serait donc observée pour la première fois en accélérateur.

La large prédominance de la matière sur l’antimatière dans l’Univers est une des grandes énigmes de la cosmologie. Pourtant, les physiciens ont avancé plusieurs réponses possibles dont l’une fait intervenir ce qu’on appelle la violation CP. Observée depuis les années 1960 dans l’oscillation des mésons K, elle est aujourd'hui traquée dans les produits de désintégration des mésons B comportant au moins un quark dit beau.

Selon la théorie de la chromodynamique quantique, les hadrons, comme les protons et les mésons, sont composés de six types de quarks qui peuvent se transformer les uns dans les autres, à cause de l’interaction électrofaible, selon des probabilités données. L’information codant quel quark peut se transformer en tel autre, et selon quelle fréquence, se trouve dans un tableau de nombres à trois lignes et trois colonnes, la matrice de Cabibbo-Kobayashi-Maskawa (CKM).

Cette matrice possède plusieurs paramètres libres qui ne sont pas prédits par le modèle standard des interactions mais celui-ci leur impose tout de même des bornes et leurs valeurs ne sont donc pas totalement arbitraires. En particulier, la matrice CKM autorise certains mésons à se désintégrer en d’autres particules d'une manière légèrement différente de celle de leur anti-méson associé.

Le phénomène est particulièrement net dans le cas de certains mésons qui oscillent à une certaine fréquence pour se transformer en un autre bien défini, qui à son tour redeviendra à nouveau le méson d’origine. Le phénomène a été observé dans l’oscillation des mésons K0-K0barre dont l’un est l’anti-méson de l’autre. Surtout, il est beaucoup plus important dans le cas des mésons B.

Pour cette raison, de véritables usines à mésons B ont été construites car, en étudiant la violation CP, on espérait en apprendre davantage sur une nouvelle physique, au-delà du modèle standard, qui, elle, fixerait les valeurs des paramètres libres de la matrice CKM.

Or, on savait que si le modèle expliquant l’asymétrie matière-anti-matière de notre Univers était bien celui faisant intervenir la violation CP, celle obtenue dans le cadre du modèle standard avec la matrice CKM était bien trop faible pour rendre compte des observations. Voilà pourquoi les résultats qui viennent d'être annoncés par une équipe française, italienne et suisse sont particulièrement intéressants.


Figure 1. Oscillations entre quarks au sein d'un méson Bs. Les anti-particules sont signalées par une barre au-dessus de leur lettre. Par échange de bosons, les quarks s (étranges) deviennent des t (top) puis des b (beaux). Les oscillations des deux quarks étant liées, le méson Bs devient un anti-Bs. Crédit : Fermilab

Une différence trop grande entre matière et anti-matière

Luca Silvestrini et ses collègues ont combiné les résultats obtenus au cours des dernières années par les expériences CDF et DØ du Fermilab. Ils se sont concentrés sur une paire de mésons B neutres bien particulière, les mésons Bs, composés d’un anti-quark beau et d’un quark étrange, noté s (pour strange en anglais). Ceux-ci oscillent en leur anti-particule, composée d’un quark beau et d’un anti-quark étrange, plus de trois mille milliards de fois chaque seconde.

Comme on peut le voir sur la figure 1, l’un des quarks ou anti-quarks peut se transformer en un quark ou un anti-quark top en émettant un boson W (vecteur de l’interaction faible), puis par absorption d'un W, redevenir un quark beau ou étrange.

Ces oscillations entre matière et antimatière sont responsables d’effets violant la symétrie CP dans les produits de désintégration. En clair, un peu plus de matière que d’antimatière (ou vice versa) est produite avec des nombres égaux de méson Bs et d’anti-mésons Bs initiaux. Ce que les analyses de l’équipe montrent, c’est que l’asymétrie obtenue dépasse les bornes autorisées par la matrice CKM !

Les cas enregistrés sont encore trop peu nombreux pour conclure que l’effet observé n’est pas une simple fluctuation statistique due au hasard. Les physiciens restent donc prudents mais, selon eux, le phénomène observé avait seulement 0,3 % de chance d’être un effet du hasard.

L’excitation monte... Nous sommes peut-être en présence d’un effet de violation CP qui, cette fois, aurait contribué de manière importante à la victoire de la matière sur l’anti-matière au début de l’Univers. De surcroît, on tiendrait là le premier signe concret de nouveaux termes dans les équations de la physique des particules qui ne sont pas naturellement contenus dans le modèle standard. En particulier, des particules supersymétriques pourraient jouer le rôle des bosons W et des quarks top en contribuant à modifier ce qui se passe dans les oscillations et les désintégrations des mésons B.

Une équipe japonaise travaillant sur la collaboration Belle vient elle aussi de publier les résultats d’études sur les oscillations des mésons B dans Nature et elle trouve à nouveau une violation CP plus importante que ne le permet le modèle standard. Tout ceci est de bon augure car ces observations signifient que les chances d’aboutir à une nouvelle physique grâce au LHC sont en train d’augmenter !

Vue aérienne du Fermilab montrant le Tevatron et le MI (Main Injector). Crédit : Fermilab
Vue aérienne du Fermilab montrant le Tevatron et le MI (Main Injector). Crédit : Fermilab

13/02/2008

Notre Univers est-il fini et chiffonné ?

Par Laurent Sacco, Futura-Sciences

Un Univers clos, de taille finie, et d'une topologie différente de celle d’une sphère : cet audacieux modèle de Jean-Pierre Luminet et de ses collègues prend aujourd'hui un peu plus de poids. Deux publications récentes comparant quelques-unes de ses prédictions et les observations du rayonnement fossile indiquent des résultats encourageants.

Déjà en 2003, les résultats fournis par WMap sur le spectre de puissance des fluctuations dans le rayonnement fossile pouvaient être interprétés comme une indication d’un taille finie de notre Univers. Mieux, on pouvait aussi y trouver des indices en faveur d’une topologie particulière de l’espace, une possibilité étudiée depuis des années par Jean-Pierre Luminet et certains de ses collaborateurs, comme les astrophysiciens Marc Lachièze-Rey et Roland Lehoucq.

Pour comprendre de quoi il s’agit, nous prendrons l'exemple d'un Univers fictif (voir la figure 1), en forme de cylindre sur lequel se balade un petit insecte. On peut construire un tel Univers en partant d’un carré et en identifiant deux de ses bords. L’opération revient à coller ceux-ci et l’on voit que tout se passe comme si l’insecte se déplaçant sur le carré et voulant sortir de celui-ci rentrait automatiquement dans ce même carré mais par le bord opposé.

 

Figure 1. La longueur d'onde des fluctuations de densité est limitée par la taille d'un univers se refermant sur lui-même. Schéma a : une créature vivant à la surface d'un cylindre se déplace et revient à son point de départ après avoir fait un tour complet. Schéma b : un cylindre découpé se transforme en un carré et le trajet de la créature sort par le côté droit pour entrer par le côté gauche. Schéma c : un tore plat est aussi construit à partir d'un carré dont on identifie les côtés opposés ; un tel espace est dit multi-connexe. Schéma d : des ondes se propageant dans un univers torique ne peuvent pas avoir une longueur d'onde supérieure au côté du carré. Pour construire un espace multi-connexe à trois dimensions, on identifie deux à deux les faces d'un polyèdre, un cube par exemple. Dans une telle configuration, la forme des ondes autorisées à se propager dépend de la géométrie de l'espace et de la façon dont les faces sont associées. Crédit : OBPSM

Une des caractéristiques d’un tel Univers à deux dimensions où vivraient des être bidimensionnels est que des rayons lumineux émis par des objets pourraient faire le tour de cet Univers et donner lieu à des images fantômes, laissant croire à un observateur qu’il est dans un monde infini peuplé d’un très grand nombres d’objets possédant des formes identiques.

Si l’on identifie les deux autres bords du carré, cela revient à coller les sommets du cylindre et on obtient un nouvel Univers en forme de pneu, possédant la même géométrie plate que le précédent et les mêmes images fantômes indiquant un Univers infini.

Notre propre Univers pourrait bien ressembler à un Univers en forme de tore, avec une géométrie plate (voir la figure 2).


Figure 2 

Notre Univers apparaît en effet comme remarquablement homogène et isotrope, avec des régions de l’espace occupées par un rayonnement fossile dont la température est identique à un degré de précision époustouflant. Sa géométrie spatiale est très proche de la géométrie euclidienne. On comprend mal comment un tel Univers a pu émerger du Big Bang, alors que les régions qui le composaient n’avaient pas eu le temps d’échanger de la chaleur à la vitesse de la lumière pour atteindre ce remarquable degré d’homogénéité dont témoigne le rayonnement fossile.

Une solution est bien sûr la théorie de l’inflation, très favorisée par les données de WMap, mais une autre est de dire que notre Univers est en réalité bien plus petit que l’on ne le croit et qu’en conséquence, les régions que nous observons avaient eu le temps de communiquer entre elles au moment du Big Bang. Sa grande taille ne serait qu’une illusion d’optique similaire à celle que nous avons décrite avec les exemples précédents.

L'apparente infinité de notre Univers est-elle une illusion d'optique ?

Lorsque l’on veut étudier les formes possibles de l’espace, on utilise une théorie mathématique appelée la topologie. Ainsi une sphère et un ballon de rugby sont topologiquement équivalents, car l’on peut déformer l’une en l’autre sans faire de trou. Ce n’est pas le cas d’un tore et d’une sphère.

Jean-Pierre Luminet et ses collègues ont donc cherché des alternatives à l’inflation pour expliquer les caractéristiques étonnantes de l’Univers en utilisant des Univers topologiquement différents mais de taille finie plus petite que celle déduite des observations avec des modèles classiques d’Univers à la Friedmann-Lemaître (Robertson-Walker).

Le meilleur candidat pour coller aux observations de WMap semble être le dodécaèdre de Poincaré. Pour comprendre de quoi il retourne considérons une sphère avec un pavage en forme de ballon de football :


Figure 3. Crédit : OBSPM

Cela revient à considérer un dodécaèdre :


Figure 4. Crédit : OBSPM

On joue ici le même jeu qu’avec le carré initial en deux dimensions mais on a affaire à un polyèdre en trois dimensions dont on va identifier les côtés opposés. On obtient ainsi une sorte de multi-tore mais qui n’en est pas vraiment un. L’espace dodécaédrique de Poincaré (PDS), en gros, c’est cela...

Or, de même qu’une corde peut osciller selon différents modes stationnaires dépendant de la longueur de la corde, un instrument de musique, comme un tambour ou un violon, ne pourra  produire que des sons caractéristiques de sa taille et de sa forme. Ainsi, lors de la « création » de l’Univers observable, le fluide de particule occupant l’Univers était animé de modes de vibrations dépendant de la forme géométrique de notre Univers, de sa composition en particules et aussi de sa topologie.

Dans le cas d’un Univers fini possédant une topologie obtenue par identification des faces d’un polyèdre donné, on peut calculer, en théorie du moins, les modes possibles d’oscillations et faire des prédictions sur la forme précise du spectre du rayonnement fossile. Remarquablement, certains des Univers finis avec une topologie dite multiplement connexe conduisent donc à des hypothèses testables et, si nous vivons dans un de ces Univers, nous pouvons le savoir !

La figure 5 montre quelques exemples d’Univers avec topologie multiplement connexe — Luminet parle d’Univers chiffonnés —, avec la structure du rayonnement fossile à laquelle ils conduisent.

 


Figure 5. Crédit : New Scientist

Depuis, l’année 2003 et la publication dans Nature d’un article dans lequel Jean-Pierre Luminet et ses collègues proposaient le Poincare Dodecahedral Space(PDS), les chercheurs ont progressé dans le calcul du spectre de puissance que devait avoir le rayonnement fossile.
Ainsi, 1,7 milliard de modes vibrationnels sont maintenant connus et pris en compte dans la comparaison avec les données de WMap. Il en résulte que le modèle PDS fait aussi bien que le modèle Lambda CDM (constante cosmologique-matière noire) avec un Univers plat, infini et à la topologie simplement connexe, alors que dans le premier on est en présence d’un Univers clos, donc fini, et à la topologie multiplement connexe. Si l’on considère la densité totale de l’Univers ramené à celle de la densité critique, on trouve alors pour ce rapport 1,018 .


Figure 6. Cliquez sur l'image pour l'agrandir. Spectres de puissance comparés pour les données expérimentales de WMap (barres d'erreur verticales), pour le modèle théorique LambdaCDM (courbe en pointillés) et pour le modèle PDS (courbe pleine). Crédit : OBSPM

Comment départager les deux théories ?

Peut–être en suivant la voie explorée depuis des années par Boudewijn Roukema, à la tête d’une équipe polonaise qui, elle aussi, annonce avoir obtenu des résultats encourageants en faveur du modèle PDS.

Examiné de près, le processus d’identification des faces du dodécaèdre conduit à des corrélations entre les images que l’on peut obtenir de la surface de dernière diffusion (voir la figure 7), correspondant pour chaque observateur dans l’Univers au moment où le rayonnement fossile a été émis. On montre que ces corrélations reviennent à considérer des intersections des images de ses surfaces sphériques et qu’elles conduisent à toute une série de cercles anti-podaux le long desquels les corrélations sont observables.


Figure 7. Une topologie multiconnexe se traduit par le fait que tout objet de l'espace peut se présenter en de multiples exemplaires au sein de l'univers observable. Pour un objet étendu comme la région d'émission du rayonnement fossile, appelée surface de dernière diffusion, celle-ci peut s'auto-intersecter le long de paires de cercles. En ce cas, cela revient à dire qu'un observateur (situé nécessairement au centre de cette surface de dernière diffusion) verra la même région de l'univers dans différentes directions. En conséquence, les fluctuations de température seront identiques le long des paires de cercles d'auto-intersection de la surface de dernière diffusion, comme le montre la figure.
Cette carte du rayonnement fossile a été calculée pour un espace plat multi-connexe, précisément un hypertore dont la taille est 3,17 fois inférieure au diamètre de l'horizon cosmologique. Crédit : OBSPM

Tout le problème, et il est de taille, est d’extraire de façon convaincante ces zones des mesures effectuées par WMap et de montrer qu’il existe bien des corrélations qui ne peuvent statistiquement se produire que de façon très improbable dans un Univers LambdaCDM. L’équipe de Boudewijn Roukema avait déjà obtenu il y a quelques années des résultats dans ce sens, et elle confirme à nouveau la possible présence de ces cercles.


Figure 8. Position des 12 cercles corrélés trouvés récemment dans les données WMap par une équipe franco-polonaise, en parfait accord avec le modèle PDS. Les centres des cercles correspondent aux centres des faces du dodécaèdre fondamental, déterminés par leurs coordonnées galactiques. La probabilité pour que le modèle LambdaCDM plat et infini reproduise par hasard une telle configuration n'est que 7 %. Crédit : OBSPM

Malheureusement, même si ces résultats sont plus précis, ils ne sont toujours pas probants. En revanche, on peut penser que les choses vont s’améliorer avec le lancement prochain du satellite Planck par l’Esa.

Quelques considérations de cosmologie quantique

Pour finir, si l’on se place du point de vue de la cosmologie quantique, on sait depuis longtemps que des Univers clos à courbure positive sont favorisés par l’approche reposant sur l’intégrale de chemin de Feynman. Comme l’ont montré Stephen Hawking et James Hartle avec leur modèle sans bord et utilisant le temps imaginaire, il est plus naturel, mais pas démontré, de considérer des Univers clos que des Univers infinis.


James Hartle. Crédit : University of California, Santa Barbara

En adoptant l’approche de la théorie des cordes, qui introduit des objets géométriques topologiquement compliqués comme les espaces de Calabi-Yau et les orbifolds, il est également plus naturel de considérer l’espace-temps macroscopique comme une partie d’un espace-temps multidimensionnel et topologiquement multiconnexe qui serait entré en expansion aux dépens d’autres dimensions qui, elles, seraient restées microscopiques.

Inutile de dire que dans le cadre des discussions actuelles, souvent chaudes, sur le principe anthropique, le Landscape, les cerveaux de Boltzmann,  la possibilité d’un Univers fini ne manquera pas d’être appréciée...

*******
Voir le documentaire sur la théorie des cordes

12/02/2008

Voyage dans le temps et théorie des cordes

Bientôt des voyages dans le temps au LHC ?

Par Laurent Sacco, Futura-Sciences

Il y a quelques mois, deux chercheurs russes ont publié un article explorant la possibilité que le LHC puisse produire des mini-machines à remonter le temps. La proposition est extrêmement spéculative et difficile à tester mais ne semble pas absurde.

En 1998-1999, deux groupes de chercheurs américains ont secoué le monde de la physique théorique en démontrant que les conséquences expérimentales d’une théorie de la gravitation quantique, comme celle des supercordes, ne nécessitaient pas obligatoirement, pour être testées, la construction d’un accélérateur grand comme la Voie Lactée.

En introduisant des dimensions supplémentaires, la constante de la gravitation que l’on mesurait n’était pas nécessairement la véritable constante fondamentale associée à l’interaction gravitationnelle. Sans ces dimensions supplémentaires, l’énergie de Planck est très élevée et vaut 1016 Tev (téra électrons-volts). Mais avec elles, en revanche, on peut imaginer que  la véritable échelle d’énergie à laquelle toutes les interactions sont unifiées, gravitation comprise, et à laquelle relativité générale d’Einstein et mécanique quantique décrivent ensemble les processus physiques, n'est peut-être plus que de l’ordre du Tev ou de 10 Tev.

Si cela se révélait exact, les conséquences seraient potentiellement fabuleuses. Non seulement il serait possible de simuler en laboratoire la « création » quantique de notre Univers observable mais, en derniers ressort, on pourrait imaginer qu’une technologie basée sur le contrôle de la Superforce, à la base de toutes les particules et de toutes les interactions du cosmos, deviendrait possible, peut-être au cours de ce siècle.

Au commencement étaient des mini-trous noirs

Une des conséquences les plus fascinantes, prédite au début des années 2000, serait la production au LHC, dans les détecteurs d’Alice ou d’Atlas par exemple, de mini-trous noirs s’évaporant rapidement par radiation Hawking. Le processus est sans danger car le temps de vie de ces hypothétiques trous noirs est bien trop bref pour qu’ils puissent grossir et avaler la Terre. Nous en sommes sûrs car, si ce genre de phénomène est réalisable avec le LHC, il se produit déjà depuis des milliards d’années sur Terre et dans le système solaire. En effet, des rayons cosmiques bien plus énergétiques que les faisceaux de particules du LHC tombent chaque année sur notre planète et y produisent d’impressionnantes gerbes de particules, comme on peut les observer avec le détecteur Auger.

Les trous noirs ressemblant aux trous de vers, on pouvait donc déjà conjecturer depuis des années que si des mini-trous noirs pouvaient être fabriqués au LHC, des mini-trous de vers pourraient l'être aussi.

L’année dernière, un article de Thibault Damour et Sergey Solodukhin démontrait d’ailleurs que les trous de vers possédaient nombre des propriétés normalement attribuées à un trou noir avec son horizon. Ainsi, on pouvait retrouver l’analogue du théorème de la calvitie, des modes quasi normaux avec émission d’ondes gravitationnelles et même la fameuse résistivité de 377 ohms du paradigme de la membrane associée à l’horizon des trous noirs. Un trou de vers serait donc difficilement discernable d’un trou noir en astrophysique à part, très probablement, par son évaporation finale par effet Hawking qui ne serait pas thermique, sans spectre de corps noir.

Une histoire d'Univers branaires

Irina Ya. Aref'eva et Igor Volovich sont de célèbres chercheurs membres du prestigieux Steklov Mathematical Institute. Cela fait plus de 10 ans qu’ils s’intéressent, entre autres, à la création de trous noirs lors de collisions de particules à très hautes énergies, au delà de la masse de Planck. Dans l’article qu’ils ont consacré à la création de trous de vers au LHC, ils montrent que dans le cas des modèles à basse masse de Planck, caractérisant l’énergie de Planck, et reposant sur l’idée que notre Univers est une membrane à trois dimensions flottant dans un Univers possédant d'autres dimensions spatiales, il est possible de violer de façon effective sur notre membrane certaines conditions sur l’énergie, interdisant normalement la création de trous de vers.

Quatrième à partir de la gauche, Irina Ya. Aref'eva, entourée de collègues et élèves. Cliquez pour agrandir. Crédit : Steklov Mathematical Institute

Ramenées à l’espace-temps à plus de 4 dimensions, les conditions sur l’énergie ne sont pas violées et l’on a donc un moyen d’obtenir facilement des petits trous de vers sur notre membrane de façon très similaire à celle des trous noirs.

Or, les trous de vers peuvent servir, théoriquement du moins, de machine à voyager dans l’espace, comme la série Stargate l’a popularisé, mais aussi de machine à voyager dans le temps ! C’est pourquoi l’article de Aref'eva et Volovich n’hésite pas à considérer sérieusement le fait que des mini-voyages dans le temps au niveau des particules élémentaires soient produits de la main de l’Homme au cours de cette année au LHC.

De la «méta-physique» falsifiable ?

Rappelons quand même que la notion de voyage dans le temps conduit à de nombreux problèmes, comme celui du grand-père. De plus, Lisa Randall, qui avaient été l’une des personnes qui avait proposé en 1999 une théorie avec des Univers sous forme de membranes et une basse masse de Planck, a publié récemment une analyse des conditions de production de trous noirs au LHC plutôt pessimiste. Certaines simplifications dans les calculs de la production de mini-trous noirs au LHC auraient conduit à une image trompeuse et trop optimiste de la création de ces mini-trous noirs.


Lisa Randall. Crédit : Gloria b.Ho

Le lecteur pourra considérer à juste titre que ces spéculations de théoriciens relèvent davantage de la métaphysique que de la science, mais on commence déjà à avoir des propositions de tests expérimentaux au LHC. A défaut de permettre la construction du vaisseau spatial de Valérian et Laureline, il y aura peut-être de la belle physique au LHC basée sur des mini-trous de vers dans moins de 10 ans.

Après tout, comme l’ont proposé John Wheeler et Richard Feynman, les particules d’anti-matière, comme le positron, peuvent être considérées sérieusement et efficacement en électrodynamique quantique comme des électrons remontant dans le temps, et cette image fait partie de la science depuis plus de 50 ans maintenant.



Le détecteur Atlas du LHC : une future porte des étoiles ? Crédit : Cern
Le détecteur Atlas du LHC : une future porte des étoiles ? Crédit : Cern


*******
Voir le documentaire sur la théorie des cordes